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Abstract—Performance of wireless navigation systems degrade
sharply in industrial environments dominated by metallic clutter
and heavy multipath. The primary cause lies in how anchors are
placed or selected. Methods that succeed in open spaces fail under
severe non-line-of-sight (nLoS) and frequent layout changes, for
instance, induced by moving forklifts or shifting shelves. We
introduce Argos, a multimodal wireless digital twin that fuses
visual and RF information to optimize anchor selection. Visual
imagery reconstructs the 3D layout, updated continuously via
existing surveillance cameras, while RF measurements capture
material-specific attenuation and reflections. We show that layout
priors alone are insufficient; combining them with the required
RF optics yields a material-aware channel model that predicts
range errors under severe nLoS. Argos adapts proactively to
environmental changes, without the requirement of repeated
RF calibration or retraining, sustaining sub-meter localization
accuracy in dynamic scenes. We validate Argos in a 120m2

factory testbed spanning over 700 locations, where the digital
twin is built from 5K RGB images and 0.4M UWB CIR samples.
To our knowledge, this is the first system to exploit visual priors
for adaptive orchestration of wireless navigation infrastructure.

I. INTRODUCTION
State-of-the-art industrial environments such as factories,

warehouses and construction sites rely on robust navigation
infrastructures to ensure safety [1], enable continuous moni-
toring and support efficient operations [2]. Such systems must
not only achieve high positioning accuracy [3] at scale, but also
remain resilient to occlusions and adapt to dynamic, evolving
layouts [4]. Radio Frequency (RF)-based navigation[5], [6]
offers a lightweight and flexible alternative, requiring less
computation, scaling to larger areas at lower deployment cost
and being far less impacted by strict visual line-of-sight (LoS)
compared to their vision-based counterparts.
Anchor Selection as a Primitive. In practice, RF navigation
relies on fixed anchors with which tracked nodes perform
ranging to estimate their respective distances[7]. For reliable
localization, two conditions must be met. First, the ranging
overhead must be minimized to keep update latency low,
making it essential to restrict measurements to a selective
subset of anchors. Second, the chosen anchors must yield ac-
curate range estimates on an average. Non-line-of-sight (nLoS)
effects caused by clutter or layout changes often corrupt such
estimates[8]. Hence, not all anchors contribute equally to
localization accuracy. Moreover, in large and dynamic scenes,
both coverage and ranging quality evolve continuously. A
static anchor choice is therefore ineffective - anchors that are
initially reliable may degrade considerably in performance as
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Fig. 1: An ≈120m2 section of a factory floor with dense metallic clutter
and heavy equipment. Five UWB anchors are deployed to evaluate anchor
deployment strategies under severe multipath and nLoS. Top-Left: GDoP-only
deployment, ignoring structural details. Top-Middle: Incorporating 3D layout
maps improves LoS coverage, reducing median error by over 5 m. Top-Right:
Layout alone ignores material-specific attenuation; Argos adds material-aware
priors for a further 2–3 m gain, achieving sub-meter localization even under
extreme NLoS (bottom-right shows segmentation into attenuation voxels).

the environment changes. Anchor selection emerges as a core
localization primitive[9], and refining it is essential for robust
RF navigation in dynamic environments.

In this paper, we present Argos1, an RF (UWB2) anchor
selection framework designed to handle the dynamics, extreme
nLoS and mobile clutter, typical of industrial environments.
To motivate our approach, we highlight the key factors that
govern anchor placement and, in turn, determine localization
accuracy (see fig. 1). Most existing systems, including com-
mercial ones [11], optimize anchor placement by minimizing
geometric dilution of precision (GDoP [12]). While effective
in open spaces, this fails completely in cluttered or nLoS-heavy
environments. Extensions that integrate structural geometry of

1Demonstration material for our system is provided in: https://vizloc.github.
io/demo-vis/

2We use Ultra-Wideband (UWB) as the reference RF system, given its
balanced trade-off between range resolution and nLoS penetration. However,
our formulation is generic and can extend to other technologies such as Wi-
Fi FTM [10], provided the available bandwidth is sufficient to capture the
channel’s multipath characteristics with adequate granularity.

https://vizloc.github.io/demo-vis/
https://vizloc.github.io/demo-vis/


the environment improve LoS coverage [13], but layout alone
is insufficient. For instance, a large drywall may present a
significant visual nLoS but remain largely transparent to RF,
whereas a small metallic forklift can severely distort wireless
multipath and disrupt ranging. This highlights the importance
of RF optics: knowledge of material-dependent attenuation and
reflections allows anchor selection strategies that can achieve
sub-meter localization even under harsh nLoS conditions.

While static factors such as geometry and material prop-
erties are important, the greater challenge lies in dynamics.
Anchors that are reliable at one moment may lose effectiveness
instantly as, say, forklifts move or shelves shift, introducing
new nLoS constraints where even a single obstruction can
disrupt multiple links. Coping with this would require contin-
uous knowledge of both layout changes and wireless channel
states - information that is extremely challenging to obtain in
real time. Frequent RF calibration to track such dynamics is
equally impractical. The key challenge, therefore, is to main-
tain accurate channel knowledge and adapt anchor deployment
at scale, without incurring unsustainable calibration overhead.
Our Approach. Argos combines visual priors with RF data
to build a wireless digital twin that adapts to environmental
dynamics. Visual imagery is used for 3D reconstruction to
capture the layout. These reconstructions can be updated at
scale as changes are registered by existing infrastructure, e.g.,
surveillance cameras. RF measurements, taken jointly with the
visual imagery, are then used to estimate RF attenuation, which
are critical for accurately modeling wireless multipath. In the
following, we elaborate on the core capabilities enable Argos
to realize such a wireless digital twin.
Channel Synthesis with Visual Priors. The first stage of Argos
is to construct a digital twin that couples scene geometry
with RF-relevant properties. Pure RF-based reconstruction
is impractical at scale, as per-voxel tomography demands
prohibitive measurements. Instead, Argos exploits visual priors
to recover the 3D layout, reducing the problem size by
orders of magnitude. Sparse RF measurements then enrich
this layout with material-dependent attenuation and reflections,
yielding an RF-aware representation of the environment. This
twin enables accurate synthesis of channel impulse responses
(CIRs) for any anchor–receiver pair, forming a practical basis
for analyzing ranging errors and guiding anchor selection.
Modeling range error. With the digital twin calibrated, Argos
models how Time-of-Arrival (ToA) estimation degrades under
nLoS. In such conditions, the direct path is often weakened or
obscured by stronger reflections, leading detectors to misiden-
tify a multipath component as the first arrival path. To quantify
this effect, we introduce the expected first-path misdetection
(∆FMD) as our metric for ranging reliability. By generating
CIRs for any anchor–receiver link, the twin predicts the spatial
distribution of ∆FMD, transforming it into not only a channel
predictor but also an error predictor, proactively anticipating
where anchors are likely to misreport ranges.
Adapting to dynamics. Argos avoids recomputing the entire
reconstruction whenever the environment changes. Instead, it
segments the scene into attenuation-aware voxels linked to

objects or structures. When objects move, lightweight visual
updates shift the corresponding voxels within the digital twin,
while only the affected multipath rays are re-traced. This
incremental process keeps the twin aligned with the evolving
layout, continuously refining attenuation parameters without
costly RF recalibration. As a result, Argos remains accurate
and adaptive, turning scene dynamics into an opportunity for
proactive anchor selection rather than a disruption.

To the best of our knowledge, this is the first work to
leverage visual priors for improving wireless localization in-
frastructure. We make the following contributions:
• We introduce Argos, a multimodal wireless digital twin

that fuses jointly acquired visual and RF information to
optimize anchor selection for navigation in cluttered indus-
trial environments. By modeling both scene geometry and
RF attenuation, Argos achieves sub-meter localization even
under severe nLoS conditions.

• We demonstrate that Argos proactively adapts to environ-
mental dynamics, updating within 5 s without repeated RF
recalibration or model retraining. Visual priors confine up-
dates to affected regions, enabling fast, selective adaptation
that maintains accuracy and resilience in real time.

• We validate Argos in real industrial environments with
heavy clutter, covering over 700 discrete locations across
120m2. The digital twin is constructed from 5K RGB
images and 0.4M UWB CIR samples collected on-site.

II. BACKGROUND AND CHALLENGES

A. Related Works

Anchor Deployment. Early strategies placed anchors based
on arena geometry, aiming to minimize multilateration uncer-
tainty through metrics such as GDoP [12]. These methods
work in open spaces but quickly degrade under nLoS. Layout-
based optimizations extended this idea by maximizing LoS
coverage for a given scene, while meta-heuristic algorithms
such as particle swarm optimization (PSO) and genetic algo-
rithms (GA) [14], [15] were used to solve the combinatorial
anchor placement problem. Some works further modeled range
variance from multipath profiles and derived Cramer-Rao
bounds [16] to estimate limits on localization accuracy.
Channel Modeling. Beyond anchor placement, data-driven
models have attempted predicting channel quality from sparse
measurements. Early interpolation methods such as IDW [17]
and Kriging [18], later extended with deep variants [19],
worked well in static settings. Recent neural approaches like
U-Net [20], attention models [21] and generative schemes
[22], [23], [24], [25] produced richer maps but remained data-
hungry and brittle to new layouts. Efforts in radio tomographic
imaging (RTI) reconstructed spatial attenuation maps from
multi-link measurements. Early RSSI-based RTI gave only
coarse fields [26], [27], while CIR-based methods sharpened
detail by resolving multipath [28], [29], [30]. Such advances
point toward 3D layout as a stronger prior for channel synthe-
sis.



Channel Synthesis with Visual Priors. Layout has emerged
as a strong prior for channel prediction. Ray-tracing tools like
Sionna RT [31] can synthesize channels from geometry, but
only when material properties are known. Neural surrogates
such as NeRF2 [13], NeWRF [32], or WiNeRT [33], [34]
improve fidelity but remain heavy and difficult to adapt under
dynamics, while hybrids like RFCanvas [35] make layouts
editable yet still ignore RF properties such as attenuation
and reflection. Recent Gaussian splatting methods [36] of-
fer faster, real-time rendering compared to NeRF, but re-
main largely static and semantics-poor. Visual pipelines like
SfM+MVS [37], NeRF [38], Gaussian splatting or segmenta-
tion methods like SA3D [39] and SAGD [40] provide accurate
layouts and semantics, but have not been exploited for large-
scale RTI or for material-aware reconstructions that adapt in
dynamic scenes.

B. Revisiting RF Anchor Selection Strategy

Accurate localization critically depends on the careful selec-
tion of anchors, since anchors positioned under occlusion not
only reduce spatial coverage but also degrade the quality of
ranging measurements. A seemingly straightforward solution
is to deploy a uniform, dense grid of anchors. However, this
strategy fails to scale, as the resulting ranging overhead grows
disproportionately with the number of devices and anchors.
Scalability Issues. In Fig. 2, we demonstrate that simply
increasing the number of anchors in a ToA-based localization
setup does not guarantee improved accuracy. With twelve
anchors uniformly deployed in a grid, Fig.2 (left) highlights
the multilateration error at a single location when ranging to
different anchor subsets. The error decreases as the number of
anchors increases beyond five, but then worsens sharply when
more anchors are included. This demonstrates how erroneous
ranges can dominate multilateration and motivates the need
for robust anchor selection to ensure good coverage. Second,
more anchors directly increase ranging latency (≈25 ms per
range) and reduce the feasible update rate. For a fixed update
rate, fewer anchors allow each tag to collect more stable
ranges, improving accuracy. This effect is also highlighted in
fig. 2(left). Third, we record signal strength (RSS) measure-
ments for each anchor in our testbed and report the CDF across
two types of anchor configurations - GDoP optimized and
the best configuration showcasing a scope for improvement.
Fig. 2(right) uses five anchors, which provides a reasonable
tradeoff between coverage, accuracy and latency. Locations
with average RSS below −90 dBm are marked out of coverage.
The best anchor configuration achieves about 10 dB higher
median RSS and full coverage, whereas GDoP optimized
anchor placement provides only ≈80% coverage.
TDoA alleviates some latency since anchors broadcast si-

multaneously, but suffers from synchronization overhead and
amplified error propagation. In our experiments, using iden-
tical anchor configurations and coverage, TDoA was 2–2.5 m
less accurate compared ToA, particularly in zones with heavy
nLoS or poor RSS. This is because hyperbolic constraints
amplify range-difference errors and synchronization offsets.
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Fig. 2: Left: Adding anchors initially improves accuracy, but random selection
with too many anchors degrades performance while also lowering the maxi-
mum update rate. Right: With 5 anchors, the best placement yields ≈10 dB
higher median SNR and full coverage, versus ≈80% in the average case.
Links below −90 dBm are treated as outages for reliable ranging.

Relying on wireless synchronization in our cluttered testbed
made the problem worse: heavy NLoS often blocked synchro-
nization frames, causing spurious updates and even system
failures.

C. Anatomy of a Range Error

In ToA-based localization, the accuracy of the estimated
range critically depends on how precisely the signal arrival
time is extracted from the receiver’s Channel Impulse Re-
sponse (CIR). The CIR is represented as a discrete sequence
of amplitude taps {Ai}, i = 0, 1, . . . ,K − 1, where each tap
denotes the channel gain contributed by either the direct path
(LoS) or a multipath reflection (nLoS). The taps are sampled
at intervals of ∆τ , determined by the signal bandwidth, which
sets the temporal resolution of the CIR. Note that the signal
bandwidth sets a fundamental quantization limit on path-delay
estimation, and thus on ranging accuracy.

A leading-edge detector (LDE) identifies the earliest CIR tap
above an amplitude threshold[41] Θ, i.e., ĵ = min{i : Ai >
Θ}, with Θ tuned to the observed noise floor. Under ideal
LoS, ĵ matches the true first path jFP. However, in cluttered
environments the attenuated AjFP may be missed or buried in
noise, causing the detector to incorrectly lock onto a stronger
reflected component Aĵ with ĵ > jFP. We define this index
offset as the First-Path Misprediction Degree,

∆FMD = |ĵ − jFP| = |LDEΘ(CIR)− jFP| (1)

LDEΘ(•) denotes the first-path index predicted by the LDE
for a threshold Θ. A nonzero ∆FMD directly translates into a
bias in the ToA estimate that further scales with the tap reso-
lution ∆τ . In protocols such as two-way ranging (TWR)[41],
such bias compounds across the 3–4 ToA exchanges that
constitute the round-trip measurement. Importantly, ∆FMD is
not symmetric across a link, for instance, its value is often
larger when clutter is concentrated near the receiver, so these
effects do not fully cancel out in ToA-based exchanges. In
fading or heavy nLoS environments, weak direct paths are
frequently overshadowed by stronger reflections[42], leading
to systematically large ∆FMD values (see, fig. 4 for more
details). Fig. 3(left) illustrates this phenomenon, where the
true first path AFP and the estimated first path ÂFP are marked.
The amplitude distributions of these taps overlap significantly,
explaining why the LDE often defers detection to a delayed
path, mispredicting the first path. Fig. 3(right) shows the
ROC curves for the LDE, highlighting the trade-off between



correct detection and false alarms as Θ varies. Under moderate
NLoS, the detector still retains reasonable discriminability, but
under heavy nLoS with poor SNR, the ROC curve collapses,
indicating frequent failures and large ∆FMD, which in turn
translates into severe ranging bias.
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Fig. 3: Left: Sample UWB CIR showing the true first path AjFP and
the detected path ÂFP. Overlapping amplitudes often cause the detector to
lock onto a later multipath component, introducing nonzero ∆FMD. Right:
ROC curves of first-path detection for varying thresholds Θ under moderate
and heavy NLoS. Severe NLoS shifts the curve, increasing misprediction
probability and bias.

D. How Accurately Can We Estimate Range Errors?

Proactive prediction of range errors is critical for optimizing
anchor placement and ensuring reliable localization. Unlike
reactive designs or traditional GDoP-based strategies that
ignore layout and signal quality, our focus is on effective
coverage. As illustrated in Fig. 4, ∆FMD remains low when
RSS exceeds −60 dBm, but increases sharply below this
threshold, indicating reduced accuracy and coverage. In the
following, we identify key challenges that guide our design of
a proactive, channel-aware localization system.
■ Challenge 1. Reliable Estimation of the UWB Channel.
The key challenge in range-based localization is predicting
whether the true ToA or first path in the CIR is detectable
or masked by noise and reflections. This requires modeling
multipath and material attenuation. Purely geometric layouts
are insufficient, as similar structures can yield very different
channels depending on surrounding material properties. For
example, a drywall may introduce only mild attenuation,
whereas a metallic shelf of similar dimensions can domi-
nate multipath and severely bias the first-path estimates (see
fig. 4 (right)).
Approach. Argos fuses 3D visual reconstructions with sparse
RF data to build an attenuation-aware wireless digital twin.
Instead of photorealism, the reconstruction targets just enough
structural and material detail to predict ∆FMD accurately. The
key challenge is choosing the right granularity of reconstruc-
tion. Too much detail adds computational overhead with little
gain, while too little fails to capture multipath reliably. The
goal is an on-demand, RF-aware channel map that enables
reliable first-path detection and ToA estimation for an anchor.
■ Challenge 2. Predicting ∆FMD from Channel Maps. Once
an RF-aware channel map is available, the next challenge
is to predict how it influences range estimation. While prior
work has largely focused on estimating coverage or classifying
CIRs as LoS or NLoS (often using supervised learning [8]),

such coarse labels fail to explain how range errors manifest.
What truly matters is not just whether a path exists, but
whether the direct path is detectable and distinguishable from
potentially stronger reflected components. To select anchors
robustly, we must estimate ∆FMD quantitatively across space
for each anchor–receiver pair.
Approach. In Argos, we model the full CIR profile based on
the predicted channel map, capturing both geometric multipath
and stochastic fading. By simulating CIR amplitude distribu-
tions and applying LDE logic, we estimate the probability that
the first path falls below threshold and is preempted by a later,
stronger tap, yielding a non-zero ∆FMD.

■ Challenge 3. Scaling with Layout Dynamics. In real-
istic deployments, the RF environment is rarely static. For
instance, forklifts move, pallets and shelves are rearranged and
temporary obstructions appear or disappear. These dynamics
continuously alter coverage and channel maps, making explicit
RF recalibration or full 3D reconstructions impractical in real
time. The challenge is scalability: keeping the digital twin
updated without reprocessing the entire layout.
Approach. Instead of repeatedly reconstructing the full 3D
scene, we model the environment as discrete, movable objects
with associated RF attenuation profiles. Position changes,
detected via existing surveillance, trigger updates only to
affected regions of the digital twin. With known or estimated
attenuation, ray-based coverage can be recomputed efficiently,
enabling lightweight updates while maintaining accurate RSS
and ∆FMD estimates over time.

III. DESIGN OF THE Argos SYSTEM

At its core, Argos builds an RF attenuation-aware digital
twin to anticipate channel behavior at scale. Since exhaustive
RF-only calibration is infeasible in large, evolving scenes,
Argos adopts a multimodal approach. A visual pipeline re-
constructs a voxelated 3D model of the scene from RGB
imagery, which is then segmented to isolate large objects that
affect the wireless channel. Next, this voxel map is refined
by a tomographic imaging module that assigns voxel-wise
attenuation coefficients, using the RF inputs. With object-level
attenuation captured, Argos employs ray tracing to predict
multipath characteristics for candidate anchor-receiver links
and translates these into errors in ToA estimates or ∆FMD.
Such translation enables proactive assessment of localization
accuracy and guides anchor selection. Finally, to maintain
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Fig. 5: Overall schematic of the Argos framework. The visual reconstructions and the dynamic updates run in realtime. Some demonstrations of the various
functional stages of the framework are available here: https://vizloc.github.io/demo-vis/

robustness as the scene evolves, Argos avoids repeated full vol-
umetric reconstructions. Instead, it leverages existing surveil-
lance streams to detect object movements and updates the
digital twin incrementally: moved objects are translated to
new voxel positions and their attenuation properties reapplied.
This lightweight update mechanism keeps channel estimates
accurate at scale without the need for expensive recalibration.
These lightweight updates ensure scalability while keeping
channel estimates accurate without costly recalibration. The
overall schematic of Argos is shown in Fig. 5, and the
following subsections expand on each component in detail.

A. Scaling Channel Synthesis with Visual Priors

In our setting, RF-only tomography is infeasible: even mod-
erate voxel resolutions yield millions of attenuation unknowns,
and the measurement volume needed to solve them is pro-
hibitive. Argos overcomes this by leveraging visual priors to
reconstruct the scene layout, cutting the dimensionality of the
tomography problem by nearly four orders of magnitude and
making RF-aware reconstruction tractable at scale. The first
stage of Argos is to recover the physical layout of the scene
from joint {Visual,RF} captures. At each capture location
we record an RGB image together with CIR spectrograms
from multiple anchors. We assume that captures during the
bootstrapping phase are of higher fidelity and collected in a
more orchestrated or controlled manner than those obtained
during runtime deployment.
■ 3D Layout Reconstruction. The visual stream is passed
onto the 3D reconstruction pipeline. We begin with COLMAP,
a widely used structure-from-motion (SfM) tool. Given mul-
tiple overlapping images of the scene, SfM estimates the
position and orientation of each corresponding camera lo-
cation by tracking how visual features move across frames.
These camera locations are also used to spatially tag the
corresponding CIR spectrograms, linking visual viewpoints
with RF measurements for subsequent RTI processing. Further
it outputs a sparse 3D point cloud that captures the rough

geometry of the scene but too crude for estimating our channel
models. To enrich this geometry, we run COLMAP′s Multi-
View Stereo (MVS) module. MVS infers pixel-level depth
from multiple views and fuses the results into a dense point
cloud, providing a more complete reconstruction of scene
surfaces. However, this cloud is still just a collection of
unconnected samples and can be noisy or incomplete in
regions with poor texture or occlusions. To make the dense
points continuous and efficient to render, we use Gaussian
Splatting, a recent technique that represents the scene as 3D
Gaussian ellipsoids instead of millions of discrete points. Each
Gaussian encodes position, orientation and when ‘splatted’
onto the image plane they blend into smooth renderings. We
adopt MVSGaussian (MVSG), a recent variant of 3DGS [36]
tailored to operate directly on MVS outputs.
■ Semantic Segmentation and Voxelization. The multi-view
point cloud obtained from SfM reconstruction is first seg-
mented at the object level. Classical clustering methods such
as RANSAC or DBSCAN were tested but proved unreliable
in cluttered industrial layouts. Instead, we adopt SAGD, a
recent boundary-enhanced extension of the Segment Anything
Model (SAM). SAGD begins by generating 2D semantic masks
from SAM in each camera view, propagates them across
multiple views and enforces consistency to stitch a complete
3D segmentation. This results in a semantically segmented 3D
scene with objects collected in the set O, where each object
is uniquely identified by oi ∈ O.

To apply RTI, the reconstructed scene is voxelized into
a global set {vg}, partitioned into free voxels {vfreeg } and
object voxels grouped by segmented objects oi ∈ O, where
each object is represented by {voigj} with gj and oi denot-
ing voxel and object identifiers, respectively. We introduce
two optimizations to shrink the voxel-wise RTI unknowns.
First, all free-space voxels share a single average attenuation
coefficient αfree, collapsing {vfreeg } into a single variable.
Second, voxels of the same object oi are tied under common
material parameters, for instance, attenuation αoi and bound-

https://vizloc.github.io/demo-vis/


ary/reflection βoi . This reduces the dimensionality from per-
voxel variables to {αfree}∪{αoi , βoi}oi∈O, and naturally ac-
commodates dynamics, since moving an object only reassigns
its voxel set without increasing the parameter count. A surface
mesh is generated per object for ray tracing, while the voxel
grid remains the computational backbone for tomography and
incremental updates.
Voxel Resolution. In practice, voxel resolution is chosen by
balancing fidelity and tractability: it must be fine enough to
match the spatial resolution implied by CIR taps (centimeter
scale at sub-nanosecond bandwidths) yet coarse enough to
keep the number of unknowns feasible. This layout-aware rep-
resentation thus provides the crucial bridge to the RTI stage,
where attenuation values are solved at the object level rather
than per-voxel, enabling both scalability and adaptability.
■ Making the Layout RF-Aware. The voxel map from visual
reconstruction encodes geometry but lacks essential RF-optical
properties such as attenuation and reflection. To make it RF-
aware, we perform tomographic estimation using CIRs col-
lected together with the visual imagery during bootstrapping.
At this stage, all anchors (denoted A) are sequentially activated
as transmitters so that CIRs can be recorded at multiple
tagged receiver locations, maximizing geometric diversity and
improving reconstruction quality. Unlike RSSI-based tomogra-
phy, which compresses the channel into a single aggregate path
loss, our approach leverages individual multipath components.
Because the scene layout is known, we can ray-trace candidate
paths between a transmitter a ∈ A and each capture location,
while CIRs provide the corresponding measured delays and
amplitudes. Each multipath component is then associated with
a ray, and the residual loss along that ray is attributed to
two object-specific parameters: (i) a per-voxel attenuation
coefficient αo, capturing signal decay through object o, and
(ii) a boundary-loss coefficient βo, capturing reflections and
scattering at object interfaces. For a given anchor–receiver pair,
the path loss of ray rj is modeled as

PLrj =
∑
o∈O

Lrj ,o αo +
∑
o∈O

Irj ,o βo (2)

where Lrj ,o counts the voxels of o traversed by rj and Irj ,o
counts the boundary interactions. Stacking terms across all
rays yields two matrices: L, the voxel-traversal matrix, and
I , the boundary-interaction matrix. Intuitively, each row of L
encodes which voxels a ray passes through and how many,
while I encodes where it reflects or refracts. Concatenating
them forms the projection matrix M = [L I], and the
unknown parameter vector x = [α⊤ β⊤]⊤ contains per-object
attenuation and boundary-loss coefficients. The tomography
problem thus reduces to solving PL = Mx, where PL is the
vector of measured path losses over all anchor–receiver rays.

We solve for x in a regularized least-squares sense,

x̂ = argmin
x

∥PL−Mx∥22 + λ∥x∥22, (3)

whose closed-form solution (M⊤M+ λI)−1M⊤PL pro-
vides stable attenuation estimates even with limited or noisy

CIR data. Although the inverse problem is formally ill-posed,
activating all anchors during bootstrap increases the diversity
of ray geometries, improving the rank and conditioning of M.
Combined with visual priors (geometry and object grouping)
and multipath-resolved CIRs, this makes the estimation con-
siderably more stable than conventional RSSI-based tomogra-
phy. In this way, multipath-aware RTI upgrades the voxel map
into a material-aware digital twin, enabling accurate channel
prediction from sparse measurements.
Channel Synthesis and CIR Generation. With the voxelated
mesh now enriched with estimated material properties, Argos
can realistically predict the CIR for any anchor–receiver
link. We employ NVIDIA SionnaRT to emulate multipath
propagation over this calibrated digital twin, ensuring high-
fidelity channel synthesis. Since the same CIR measurements
were used to calibrate the attenuation image, the sim-to-real
gap is minimal, allowing predictions to closely track physical
measurements.

B. ToA Error Guided Anchor Selection

With the calibrated digital twin, Argos can generate CIRs
for any anchor-receiver link. Using these together with local
fading statistics, we predict how LDEΘ (eqn. 1) detects the
first path under nLoS conditions. This helps us estimate
how ∆FMD is spatially distributed, which can guide anchor
selection: choosing the subset that offers wide coverage, low
misdetection (∆FMD) and acceptable update rates.

■ Modeling ToA Estimation Error. Let X denote the random
tap index reported by LDEΘ. Pr(X = j) corresponds to the
probability of the event that tap j is the first to exceed the
threshold Θ, while all preceding taps remain below it. This
can be expressed as,

Pr(X = j) =
( j−1∏

τ=0

[1− qi(Θ)]
)
qj(Θ) (4)

qτ (Θ) = Pr(Aτ > Θ) is the probability that tap τ is detectable,
while the product term ensures that j is the first such tap. With
a delay spread of K taps, the expectation of the LDE′s output
is then E[X] =

∑K−1
j=0 j Pr(X = j), from which E[∆FMD] =

|jFP − E[X]| follows.
The key modeling choice is how to evaluate qτ (Θ). Each tap

amplitude Aτ is physically well described by a Nakagamim

distribution, Aτ ∼ Nakagami(mτ ,Ωτ ), where mτ character-
izes fading severity and Ωτ = E[A2

τ ] is the mean power.
Since the Nakagami distribution does not yield a closed
form for threshold exceedance, we approximate Aτ by a
Gaussian fit with equivalent mean µτ and variance σ2

τ . Hence
qi(Θ) ≈ Q

(
(Θ−µi)/σi

)
, where Q(x) denotes the area under

the tail of the standard normal distribution from x to ∞. µτ are
taken from the tap amplitudes of the ray-traced CIR, while the
variances σ2

τ are interpolated from CIR measurements using
inverse-distance weighting. Although estimating E[∆FMD] is
ill-posed, however, visual priors, multipath CIRs for µi and
anchor diversity at bootstrap together yield a stable solution.

Scalability. Argos caches the ∆FMD in a lookup table
(FMD cache) F : (Ltx, Lrx) 7→ ∆FMD, so that anchor selection



and scene updates can query range errors in constant time.
Ray-tracing outputs are also stored as multipath profiles,
enabling local updates when objects move without rerunning
the full pipeline. In this way, Argos transforms the digital twin
into not only a channel predictor but also an error predictor,
providing the first use of visual priors to proactively model
ToA errors in cluttered environments.

■ Optimal Anchor Subset Selection. In a ToA system, each
anchor transmits in a separate TDMA slot. Adding anchors
improves geometry and reduces range errors, but also lowers
the update rate. Fewer anchors keep updates fast but risk poor
coverage and higher range errors.

Let L be the set of candidate receiver locations, where each
L ∈ L is assigned a prior weight wL reflecting its likelihood
of occupancy (e.g., from trajectory priors or deployment
maps). For each location L, let AL ⊆ A denote the set of
anchors that cover L. Each anchor a ∈ AL contributes an
expected misdetection error ∆a

FMD, L, average error at L being,
∆FMD, L = 1

|AL|
∑

a∈AL
∆a

FMD, L. We seek a selected anchor
set S ⊆ A that satisfies three requirements: (i) Coverage:
the weighted fraction of locations covered by at least one
anchor in S must exceed a target threshold p. (ii) Coverage
density: every covered location must be supported by at least
four anchors, i.e., |AL ∩ S| ≥ 4, ∀L ∈ L. (iii) Error
minimization: the weighted average misdetection across all
locations should be minimized,

min
S⊆A

∑
L∈L

wL ∆FMD,L (5)

The subset size is constrained by latency: since each anchor
occupies a ToA slot, |S| ≤ Nmax, where Nmax is determined
by the maximum desired update rate. The problem naturally
reduces to a weighted set-cover: each anchor covers a subset
of prior-weighted locations and contributes an associated error
cost through its ∆a

FMD,L values. We solve it using a greedy
strategy, where at each step the candidate anchor a is evaluated
by the additional prior-weighted locations it brings under
coverage together with the average misdetection it introduces.
The anchor offering the best tradeoff is added to S, and the
process repeats until the coverage, coverage density and la-
tency constraints are met. This greedy rule yields near-optimal
subsets in practice while keeping computation scalable.
C. Adaptation to Dynamics

Anchor selections are not static: in cluttered environments,
multipath can shift as objects move, altering ranging errors.
A region once well served by a subset of anchors may later
degrade if its multipath profile changes. To handle this, Argos
leverages static surveillance cameras that continuously track
object motion and trigger lightweight updates to the digital
twin, avoiding costly full reconstructions. When an object
oi ∈ O moves or rotates, its displacement is represented by
a rigid-body transform (∆tr,∆rot). This transform is applied
to all voxels {voigj} spanning the object, where gj are their
global IDs. The original voxels are reset to free space {vfreeg },
while the transformed set becomes {voig′ } at the new locations.
At the mesh level, the same transform shifts or rotates the

object surface directly, keeping the geometric representation
consistent.

Next, Argos identifies rays in the multipath profile M,
whose trajectories intersect voxels that changed their object
labels. To speed up computation, only these affected rays
are re-traced and updated for the corresponding transmitter–
receiver pairs. The FMD cache F is refreshed in tandem,
so error predictions remain accurate. Finally, the incremental
updates also enrich the tomography. Initial estimation may
be underdetermined, but as objects move, new ray equations
are naturally added, while unchanged ones remain valid.
This refines αoi and βoi over time, turning scene dynamics
into additional calibration opportunities. In this way, Argos
maintains a lightweight, scalable digital twin that evolves with
the environment, supporting proactive anchor selection as well
as live modeling of range errors and CIRs across the scene.

IV. Argos TESTBED AND EVALUATION RESULTS

A. Argos Testbed Setup

We evaluate Argos in a 14.5m×8m section of a fabrication
facility, dense with heavy machinery, movable racks and
metal fencing that create severe nLoS and multipath (fig. 6).
Four ceiling-mounted surveillance cameras provide complete
coverage, enabling coarse (≈2 m) tracking of all objects.
Hardware Infrastructure. We deploy twelve Decawave
DW1000 UWB transceivers as fixed anchors in a grid, op-
erating in ToA mode. The anchors run at 3.9 GHz channel
with 500 MHz bandwidth and 24 dB transmit gain. Receiver
nodes perform TWR with selected anchors and extract CIRs
from packets, timestamped and tagged with anchor IDs. The
hardware reported CIR is sampled at 1 ns resolution, with the
first path reported at a higher precision of 12.65 ps. However,
for ∆FMD estimation, the effective ground-truth resolution
remains 1 ns. Each receiver node is powered and interfaced
through a dedicated smartphone, which logs range and CIR
spectrograms locally. The DW1000 uses an industry-standard
LDE algorithm to timestamp the first path (§ II-C), adapting
thresholds to the noise floor for robustness. Thresholds are
set through the LDE_CFG1 register, which applies separate
scales to the noise floor and noise peaks. This setup suppresses
false triggers while preserving attenuated nLoS paths. The
smartphone also captures HD images synchronized with CIR
data to form {Visual,RF} tuples, which are uploaded over
WiFi to a central controller (NVIDIARTX3090 GPU system).
Software Pipelines. We use the central controller for running
the software pipelines in real time. For visual reconstruction,
we use COLMAP[37], [43] with SfM to generate the ini-
tial point cloud. MVSGAUSSIAN[36] then densifies it using
MVS and represents the scene with Gaussian splats. Finally,
SAGS[44] applies semantic segmentation to produce a seg-
mented point cloud. From this, we generate a mesh augmented
with material properties estimated by RTI and export it in a
format compatible with SIONNA-RT. This enables CIR-level
ray-tracing simulations with access to individual propagation
paths.
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Fig. 6: 3D reconstructed views of the testbed with the ground-truth trajectory
(red dotted line) marked along which imagery and RF data were collected.

Dataset. We collect ground truth along a 50 m marked tra-
jectory (fig. 6(right)), covering about 700 locations. At each
location, we record (a) multiple RGB images from different
heights and directions, (b) CIR spectrograms from all anchors
over 5s at about 100 Hz and (c) the true physical distance
measurement of the receiver location from all twelve anchors.
The dataset includes about 5K images and 0.4M CIR samples.
Additionally, we generate synthetic channel traces for the same
receiver locations via ray-tracing in Sionna-RT that are used
for validating the accuracy of predicted CIR or ∆FMD.

B. Experiments and Performance Evaluation

Fig. 6 shows snapshots of the reconstructed mesh generated
from images. This segmented 3D scene serves as the prelim-
inary mesh toward building an RF-aware digital twin of the
environment. The digital twin is voxelized at 30 cm resolution
(1 ns×c) and the coverage threshold is set to −90 dBm.
■ Overall Localization Accuracy. We evaluate Argos ’s
accuracy by comparing anchor configurations from three tech-
niques: a GDoP-based baseline [12], Argos with layout-only
information, i.e., no RF attenuation details (ArgosLO) and the
complete pipeline. We perform anchor selection with budgets
of 3, 5 and 8 anchors from the grid of twelve fixed anchors.
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Fig. 7: Left: In low multipath, regression, SVR and MLP yield MAEs of
≈ 4, 3 and 2 taps, while Argos achieves near-perfect estimation. Under heavy
multipath, errors rise to ≈ 6, 5 and 3 taps, with Argos remains minimally
affected. Argos also shows lower variance or lesser uncertainity overall. Right:
ECDF of MAE between measured and estimated ∆FMD via Sionna− RT.
Deviations remain within 4 taps, medians being 1 and 2 taps under low and
heavy multipath respectively.

(a)∆FMD Model Accuracy: Accurate prediction of ∆FMD is
central to optimizing anchor selection. A single tap mispredic-
tion results in ≈30 cm of ToA estimation error. While learning-
based methods have been explored to classify LoS/nLoS or

predict range errors from CIR spectrograms, it is challenging
to generalize such models across large areas and they often
overfit to small regions. Under scene dynamics or heavy mul-
tipath, their predictions become highly unreliable compared
to our ray-tracing–based analytical model. In contrast, Argos
remains reliable, with MAEs (|∆True

FMD −∆Pred
FMD |) of ≈1–2 taps

even under heavy multipath. ML baselines like polynomial
regression, support vector regression (SVR) and multi-layer
perceptron (MLP) are evaluated and average 3–7 taps of
MAE. Further, their accuracy degrade sharply with increasing
multipath or on introducing scene dynamics (see, fig. 7 for
details). The ground-truth first path (jFP) is derived directly
from the physical range measurement.
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Fig. 8: Left: Argos achieves up to a 4 tap median reduction in ∆FMD over
ArgosLO. Right: Under a 5-anchor budget, Argos yields a median localization
error of 0.6m, compared to 1.8m (ArgosLO) and 2.97m (GDoP).

(b) Improvement Over Layout-Based Optimization: We evalu-
ate the added value of incorporating RF information on top of
the layout mesh, comparing ArgosLO with Argos. As demon-
strated in fig. 8, RF awareness yields clear benefits. Argos
reduces median ∆FMD by up to 4 taps under sparse anchor
budgets. Even as anchor density increases and overall errors
decrease, it continues to maintain a measurable advantage.
(c) Baseline Comparisons: Beyond ∆FMD, we examine the
compounded localization error, which accumulates over multi-
ple TWR exchanges while partially correcting for range bias.
Since range errors vary across anchors, their combination
drives the overall localization error distribution. We show in
fig. 8 (right) that with 5 anchors, incorporating RF awareness
enables Argos to achieve sub-meter median error in harsh mul-
tipath, outperforming ArgosLO and GDoP-based optimizations.
■ Performance in Dynamic Environments. We evaluate
Argos ’s robustness to scene dynamics by introducing con-
trolled churn in the arena and tracking localization stability.
Starting from the baseline object layout (Fig. 10(left)), Argos
builds an ∆FMD cache, i.e., F : (Ltx, Lrx) 7→ ∆FMD, using a
30 cm voxel resolution and a −90 dBm coverage threshold.
This enables anchor selection and scene updates to query
expected range errors in constant time. Localization errors are
then measured at the same ground-truth locations while the
layout is churned, with changes quantified by the fraction of
voxels that differ between the initial and updated maps. We
test churn levels from 2% (e.g., moving a single shelf) up
to 10% (relocating all shelves and robotic arms). Larger-scale
dynamics are emulated in SIONNA-RT, which we have shown
to be reliable for ∆FMD predictions.(a) Adaptation Latency. Fig. 9 shows the effect of 6% voxel
churn as a result of object movement in the scene. The
median error shoots to ≈6 m, then recovers within ≈5 s after
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the update pipeline completes. We analyze recovery time by
breaking it into four stages: voxel transform computation,
mesh update, ∆FMD cache recomputation, and anchor rese-
lection. The ∆FMD cache stage dominates (60–70% of total
latency) due to ray-tracing overhead, but can be reduced by
parallelizing ray-tracing across anchors.
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Fig. 10: Effect of layout dynamics on recomputation latency. Left: Original
voxel map. Middle: Changed map with displaced robotic arms (green) – 6%
voxel change. Right: ∆FMD cache recomputation latency grows with voxel
churn: ≈2 s for 2% updates and ≈7 s for 10%.

(b) Effect of Object Movement. ∆FMD cache recomputation la-
tency increases with object movements or voxel churns, as
more rays must be retraced (fig. 10). Non-cache overheads are
negligible; with about 6% change, recomputation takes ≈4s
and with 10% nearly 7s. In practice, large spikes in voxel
churns are relatively uncommon – factory dynamics evolve
gradually over time, e.g.,forklifts or shelves move. Since such
changes unfold over tens of seconds to minutes, far slower
than Argos ’s 5–7s recomputation cycle, the system maintains
continuous operation, showing transient error spikes followed
by recovery. Performance can be further improved through
IMU fallback, localized updates, and parallelized ray-tracing,
which are not yet implemented in the current version of Argos.
■ Scene Reconstruction. We analyze how 3D reconstruction
fidelity affects localization accuracy in Argos. First, we assess
semantic segmentation quality by measuring segmentation
accuracy. Second, we vary voxel resolution from 10 cm to
100 cm in steps of 10 cm and run Argos with a five-anchor
budget at a −90 dBm coverage threshold. To capture material
effects, both RF-aware and layout-only (ArgosLO) digital twins
are evaluated.
(a) Required Amount of Granularity. Fig. 11 (top) shows that
voxel resolution strongly impacts localization accuracy. Coarse
voxels (100 cm, PSNR≈8 dB) produce a median error of
≈6 m, while finer voxels (10 cm, PSNR≈22 dB) achieve
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Fig. 12: Top-left: Effect of RSS threshold with 5 anchors. At −74 dBm,
coverage drops to ≈40% uncovered while median ∆FMD improves to 7 taps,
giving a practical balance. Top-right: Effect of anchor count at −90 dBm.
Largest gains occur from 4 to 5 anchors; beyond 5, coverage gains and ∆FMD

reduction are marginal while ToA-TWR overhead grows. Bottom: ∆FMD

heatmaps for representative anchor placements.

sub-meter accuracy. Beyond PSNR≈14 dB (40 cm), accuracy
gains diminish while ∆FMD cache recomputation cost rises
steeply. We adopt 30 cm voxels that balance sub-meter ac-
curacy with practical update latency. Notably, this inflection
point coincides with the CIR time resolution of 1 ns (30 cm).
(b) Comments on Segmentation. We manually segment 47 ob-
jects, ranging from shelves, forklifts and robotic arms to
barrels, wooden partitions and large scrap plates, whose di-
mension exceeds our voxel length. Groundtruth segments are
created using the Blender tool [45]. Fig. 11 (top, right) reports
accuracy of different methods. Classical approaches such as
DBSCAN (87%) and RANSAC (91%) often merge adjacent
objects, especially in clutter. Semantic methods perform better:
SA3D and SAGD achieve 98–99%, with SAGD yielding the
cleanest boundaries by mitigating splatting artifacts.
■ Discussion on Coverage. Good ∆FMD is ineffective if
large regions remain uncovered. We study the RF coverage
with under two settings: (i) varying RSS thresholds from −92
to −50 dBm with five anchors, and (ii) varying anchor count
(3–12) at a fixed −90 dBm threshold.
(a) Effect of Coverage Threshold. Higher RSS thresholds re-
strict coverage to strong links, lowering ∆FMD but leaving
uncovered patches. Lower thresholds expand coverage by in-



cluding weak links, which raises ∆FMD. A mid-level threshold
offers the best trade-off, ensuring reasonable coverage while
keeping mismatch distances manageable (see, fig. 12(left)).
(b) Effect of Anchor Count. Increasing the anchor budget im-
proves coverage and reduces error, with the most significant
gains between three and five anchors. Beyond five, improve-
ments become marginal, while additional anchors increase
ToA-TWR cycle time due to longer TDMA schedules (see
figs. 2 and 12(right)).

V. CONCLUSION

In this work, we introduced Argos, a multimodal wireless
digital twin that fuses jointly captured visual and RF data to
optimize anchor selection in cluttered industrial environments.
By combining geometric and attenuation cues, Argos yields a
material-aware scene representation that remains robust across
diverse multipath conditions. A central capability of Argos is
its proactive use of visual priors to isolate changes, enabling
fast, selective updates without repeated RF recalibration or
model retraining. This design makes the system lightweight,
scalable and resilient to real-world scene dynamics. Argos
achieves median localization errors as low as 0.6 m, improving
accuracy by up to state-of-the-art 3× over baselines. Moreover,
it sustains sub-meter accuracy even under heavy multipath
and scene dynamics, with update times as low as 5s. Beyond
localization, the channel synthesis capability of Argos can
drive richer CIR-based sensing which broadens its impact
across diverse application verticals.
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